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Al~t rac t - -A self-consistent kinetic grain flow model proposed earlier has been applied in detail to 
the description of rapid flow in a vertical channel. The equations of motion reduce to an ordinary 
differential equation for the fluctuation velocity ~, which is solved numerically. Boundary conditions 
on v are derived which incorporate the nature of grain-wall collisions. The overall flow pattern is 
found to depend significantly upon the grain inelasticity parameter 7 (7 ----- 0 for elastic grains) and 
upon the grain diameter d. The flow velocity profile is rounded for very elastic grains and for large 
grains, but becomes more blunt as grain dilmeter decreases or 7 increases. For large enough 7, a 
region of plug flow develops in the central region of the channel, corresponding to a vanishing grain 
fluctuation velocity. In this case the region of dispersed or "thermalized" grains, within which all 
shearing occurs, is restricted to a thin layer near each wall. 

INTRODUCTION 

Within the past several years there has been an increase in interest in the mechanics of 
systems composed of cohesionless grains (Ackermann & Shen 1982; Campbell & Brennen 
1982; Cowin 1978; Haft 1983; Jenkins & Cowin 1979; Jenkins & Savage 1982; McTigue 
1978; Ogawa 1978; Ogawa et al. 1980;, Oshima 1978; Savage 1979; Savage & Jeffrey 1981; 
Shen & Ackermann 1982). For systems undergoing rapid shear, or where an external energy 
source is available, grains may be sufficiently dispersed from one another that a collisional 
description of grain flow constructed in analogy to the kinetic theory of gases becomes 
possible (Bagnold 1954; Bagnold 1956; Campbell & Brennen 1982; Haft 1983; Jenkins & 
Cowin 1979; McTigue 1978; Ogawa 1978; Ogawa et al. 1980;, Savage & Jeffrey 1981). 

From this point, two general approaches to the problem may be contemplated. A 
"realistic" model would attempt to encompass not only the rudimentary notions of mo- 
mentum and energy exchange among colliding particles, but would also address the issues 
of grain spin, grain shape, triboelectric effects, effects of interstitial fluids, effects of velocity 
dependence of coefficients of restitution and friction, and so forth. From such a model, if 
it were soluble, one could predict the detailed behavior of actual granular systems found 
in nature and technology. This is an ultimate aim of the study of granular materials. At 
another level, however, especially in the exploratory stages of investigation which must 
characterize the initial development of our understanding of complicated physical systems, 
a simplified model which isolates and concentrates upon selected features of the system is 
desirable. To be useful, such models need not necessarily reproduce the detailed behavior 
observed in any particular experiment; rather, their utility derives from the fact that they 
illuminate and clarify certain features of the system which might otherwise be obscured by 
the complexity of a "realistic" model. It is only through the construction of such simplified 
models, whose inner workings are layed bare, that it is possible to decide what the next 
step toward "realism" should be. This is the spirit of the present work. 

To implement this study, we draw upon the results of Haft (1983), who has recently 
given a consistent treatment of dispersed kinetic flows in terms of fluid-like equations of 
motion. These equations embody the requirements of mass, momentum and energy con- 
servation in the usual way, except that the "coefficients"-of viscosity and thermal diffusivity, 
and the collisional dissipation term in the energy equation, are not constant, but depend 
upon the state of the system. In principle we must also include the angular momentum 
equation (Haft 1983; Ohima 1978). Although the inclusion of spin would have some effect 
on the values of the transport functions, the overall conclusions of this paper are expected 
to be essentially independent of the grain-grain spin coupling. For simplicity and clarity 
we therefore neglect the effects of grain spin. We thus have the continuity equation 
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a p +  a ( p u ; ) = O  , 
at aX i 

[1] 

the momentum equation in a gravitational field g, 

a~t (pui) q- --~x(ul<pui) 
[2] 

and the corresponding energy equation, 

_o ( ~ p u  2 + ~p~2) + o [u,o (~u~+ ~ 2 ) ]  
at 0xk 

\Oxk 0xi a x k 

+ p u i g i - I  

[3] 

F.quation [3] embodies the conduction of internal energy as "heat," and thus avoids the 
problems encountered by the theory of Ogawa et  al. (1980) in describing vertical channel 
flow (see discussion by Jenkins & Cowin (1979)). In the above equations, p is the bulk 
density of the "granular fluid," u is the flow velocity, ~ the fluctuation velocity (henceforth 
called the "thermal" velocity), 71 the codficient of viscosity, g the codficient of "thermal" 
diff~udvity, p the pressure and I the energy dissipation term. Although by this terminology 
we note the analogy with theJ'modynamics, no purely thermodynamic results are used in 
the developments below. 

These equations can be solved when they are supplemented by constitutive relations 
involving R,p, K and I. In the kinetic model of Haft (1983) (see also McTigue 1978, Ogawa 
1978; Ogawa et  al. 1980; Savage & Jeffrey, 1981), these coefficients have the form 

p =  tdp ~ , [4] 
$ 

= q d ~ p -  , [5] 
s 

K = rd  :v- , [6] 
$ 

~3 
i = 7 p -  [7] 

s 

Here s, the local mean surface-to-surface separation of grains, is related to the mass density 
p and grain diameter by 

m 
P ~" (s+d)~ ' IS] 

and 7 is a parameter measuring the inelasticity of grain collisions. These relations were 
derived under the assumption that the constituent grains always remain closer together 
than a grain diameter (s << d), and only flows which satisfy this criterion are considered 
here. 

7 is equal to b (1 - ~2), where ~, the coefficient of restitution, ranges between 1 
(completely elastic) and 0 (completely inelastic) and b is a constant. If the particle distribution 
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functions were known, the quantities t, q, r and b could be evaluated exactly. Here, however, 
our aim is to elucidate the flow characteristics of the kinetic grain model in a vertical 
channel in a semiquantitative manner. In real flows unavoidable, if small, effects of Coulomb 
friction, grain spin and grain irregularities, together with uncertainties in the details of 
grain-wall collisions, seem to make excessive precision in specification of the collisional 
model self-deceiving. Therefore we simply take t, q, r and b as dimensionless constants. 
They are of order unity. This procedure has the added advantage that the contributions of 
pressure and of viscous forces (t and q), of conduction (r) and the effects of grain inelasticity 
(b) can often be readily identified at a glance in analytic expressions. 

Although [1]-[3] superficially resemble the equations of motion of a classical fluid, 
the auxiliary relations, [4]-[7] show that within the model the pressure, viscosity and other 
quantifies characterizing the state of the granular fluid are determined entirely by the thermal 
velocity ~ and the density parameter s. These in turn are strongly coupled to the flow 
velocity through the equations of motion. Perceived in this way, it is clear that a self- 
consistent treatment of dispersive (s > 0) grain flow is a necessity; quantities such as thermal 
diffusivity and viscosity are not provided a priori, but must be determined as part of the 
solution. 

SOLVING THE EQUATIONS OF MOTION 

As shown by Haft (1983) for steady two-dimensional flows, the equations of motion, 
[I]-[3], become linear in u and v. Furthermore, with suitable substitution one can generally 
reduce the problem to the solution of a single ordinary differential equation. Earlier analytical 
work (Haft 1983) gave explicit solutions for the flow velocity and thermal velocity in 
horizontal Couette flow. In order to obtain simple analytic solutions, either the gravitational 
field g had to be set equal to zero, or the grain indasticity y had to be set equal to zero. 
In the former case, the velocity fields are expressible in terms of trigonometric functions of 
position within the Couette channel, and in the latter case as trigonometric functions of 
the logarithm of position. 

It is clear that gravitational effects are always present to a greater or lesser degree in 
any terrestrial experimental configuration, but it is less clear how important the role of 
grain inelasticity might be. In fact, the presence of even a tiny amount of inelasticity in 
grain-grain collisions will have a large effect on the overall flow and thermal patterns if a 
large enough number of grains are involved. This is because energy loss through collisions 
is an exponentiating process, so that energy supplied at one point, either internally through 
viscous losses, or externally through a boundary, is rapidly dissipated within a characteristic 
e-folding length ~ proportional to the grain diameter (see [18] below). If an experimental 
flow apparatus under consideration has a linear dimension which is large compared to k, 
as is often the case even for very dastic grains, then it is important to include explicity the 
effects of indasticity. 

In order to study dispersive grain flow in an approximation to a physically realizable 
Configuration, we have looked at solutions to [1]-[7] for the case of flow in a long, two- 
dimensional channel, figure I. The gravitational force is parallel to the channel walls and 
grain-grain collisions are characterized by the inelasticity parameter 7 (see [7]). 

The steady-state vertical channel problem, including the effects of both gravity and 
inelasticity, can be solved in the following way. Because of the condition s < < d, the 
density p can be taken essentially constant. The x and y-components of the momentum 
equation then give the dimensionless pressure 

Po - -  Po p&h ' [9] 

where P0 is a constant, i.e. the pressure is the same everywhere in the channel, and 

~ ( Y ) =  - Y  + ~  , DO] 
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Figure 1. Schematic of vertical channel. 

where Y = y / h, Eo = O'o / P hg, and o" o is a constant shear stress. After some manipulation, 
using [4] and the relation cr = 7] du/dy ,  [3] can be reduced to a linear (but not lineafized) 
equation for V, 

, h , 2  + - 7 7 0 }  - v = o , [11] 

where 8 = d~ h and V = 5 / (gh )  ~. 
The solutions to this equation are the parabolic cylinder functions (for the special case 

where y = 0 these reduce to Bessel functions of order ~4). Jenkins & Savage (1982) have 
independently derived an equation for vertical flow of the form given in [I1], but did not 
discuss the solutions. 

Explicit solutions may be determined once suitable boundary conditions have been 
specified. A general treatment of boundary conditions for the kinetic model of granular 
matter has recently been given by Hui et al. (1984). In the present case we can argue as 
follows. If ew is the coefficient of restitution for a grain-wall  collision, then, from arguments 
similar to those made in (Haft 1983), the rate of energy loss to the wall is 

1 5 [12] 
Qw = a ~ m - v Z (  1 - e~)d~ s , 

where a is a dimensionless constant of order unity. If this is equated to the energy delivered 
to the wall via conduction, 

Q = K ~yy (½p~~) , [13] 
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then we obtain the desired boundary condition on 
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2rd d~0 
V O - a ( l _ e  2) dy ' [ 1 4 ]  

where the subscripts indicate that the thermal velocity and its derivative are to be evaluated 
at the wall. A similar equation can be derived for the flow velocity u by a consideration 
of the stresses applied to the wall via grain-wall collisions. For simplicity, and without 
loss of generality, we considered only the case of a channel with rough walls, for which 
the no-slip condition u(0) = u(h) = 0 is appropriate. 

To solve [11] we set t = q --- • ---- a = 1. For problems in which the two walls of 
the channel are identical (the case considered here), the appropriate solution to [I 1] is 
symmetrical about the midline (Y -- ~ )  of the channel. In this case, 20 = ~ .  Equation 
[11] is integrated numerically for an arbitrary choice of the pressure P0 and an arbitrary 
value of V0 = ~o/(gh) I/2, subject to [14] and the condition d V / d Y  = 0 at Y = ~ .  If the 
latter condition cannot be satisfied, a new value of Po is chosen, keeping V0 fixed, and [11] 
reintegrated. This procedure continues until a suitable value of P0 is determined. 

Because [11] and [14] are linear and homogeneous, they do not determine the nor- 
realization of V. To do so requires an additional condition. This condition can be expressed 
(Haft 1983) in terms of the "free space" parameter, Ah, which is the thickness of the empty 
space which would be produced if all the grains in the channd were uniformly compressed 
to maximum density (s = 0) against one wall. It is easy to show that 

3fol AI1---  ~ S ( Y ) d Y  , [15] 

where ~ -- ~h / h and S ---- s / h. From this equation, and [4] for the pressure, it follows 
that Po and V must be related by 

3 t f  I V2dY 
1'o = a H ~ o  [16] 

which determines the magnitude of V. 
Finally, from [10] and the fact that the stress tr is related to the flow velocity by 

o" -- ~1 du /dy ,  the flow velocity U = u / (gh)  ~ can be calculated from 

t fr[~,o - ]~ V(Y)dY [17] 
u(Y)--q8%~ P0/ 

which reflects the no-slip boundary condition. 

SOLUTIONS TO THE EQUATIONS OF MOTION 

Figure 2 shows thermal and flow velocities V and U computed for a grain diameter 
to channel width ratio 8 = 0.01 and free space parameter ~ =- 0.1. In this example the 
grain-grain inelasticity coefficient is 7 ---- 0.01, and the grain-wall coefficient of restitution 
e,  is 0.66. From the shape of the curve for U it is clear that most of the sheafing, and 
hence viscous heating, occurs away from the center of the channel. The damping length 

A ~ h/h , ~  8 / y  ~ [18] 

which is a measure of the distance over which a pulse of granular heat can be conducted 
before dissipation is on the order of 0.1, rather less than the channel width, and consequently 
the curve of thermal velocity exhibits a central dimple. For grains with nearly perfect 
elasticity (3/-- 0), the central dimple disappears, while for increasingly inelastic grains the 
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Figure  2. Thermal  and  flow veloci ty  profi les for ~, = 0.01, 8 = 0.01, A H  = 0.1 and  e ,  = 0.66. 

dimple rapidly deepens until the thermal velocity vanishes in the central region of the 
channel. In view of the fact that the damping length is scaled by the grain diameter, inelastic 
effects will be more important in systems containing small grains than in a comparably 
sized system filled with larger grains. This implies that kinetic systems of very fine grains 
(true powders) would in the absence of pneumatic and cohesive effects prefer to deform 
along localized shear zones (although in most real powders such effects are importan0. 

Figure 3 shows the behavior of the thermal velocity for y = 0. I. At this value of the 
inelasticity parameter energy cannot be conducted efficiently into the center of the channel 
and the granular temperature falls nearly to zero here. The various curves in figure 3 
correspond to different choices of the wall coefficient ew. The more elastic the grain-wall 
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Figure  3. Thermal  veloci ty profiles for e ,  ---- 0.25, 0.69 and  0.84 wi th  y -- 0.1, B --- 0.01 and  
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collisions are, the greater the value of Iio, as expected, but the general shape of the thermal 
velocity profile is not sensitive to the boundary condition on V. 

Corresponding to the change in the thermalization pattern with increasing 7 is a shift 
in the flow velocity profile, figures 2 and 4. At small values of 7, the flow profile is rounded, 
rising gently to a maximum in the center of the channel, figure 2. As 3' increases, the flow 
profiles become increasingly blunt, until for values of 3' larger than about 0.1, in the case 
considered here, the flow pattern becomes so flat that material in the inner part of the 
channel travels essentially as an undeforming plug (figure 4). 

The present model is predicated upon the hypothesis of binary collisions, and this 
hypothesis falls in the central channel region when V -, 0. Nonetheless, the solutions 
obtained in the peripheral shear bands remain semiquantitatively correct. Toward the chan- 
nel center bulk grain density increases as the grains crowd together (figure 5) in an attempt 
to sustain pressure in response to falling thermal velocity. Increasing bulk densities cor- 
respond to increasing shear resistance; at sufficiently high density no shearing at all is 
possible. Moreover, for any flow law in a symmetrical channel the center of the channel is 
a zone of low applied shear. Plug formation, therefore, is practically inescapable. 

The velocity and density solutions obtained here are not strongly dependent on where 
the "inner" boundary condition is applied. We have used d V / d Y  = 0 at Y = ½ but since 
the gradient vanishes to a good approximation over most of the width of the plug (figure 
3) we can apply a similar boundary condition near the plug boundary to obtain similar 
solutions in the shear bands. Therefore, our results are not invalidated by the failure of 
kinetic model within the plug zone, where the thermal velocity vanishes. A more complete 
treatment of grain-grain frictional effects will eventually allow a more accurate description 
of the transition region between the zone of dispersed grains and the zone of consolidated 
grains. 

Observations of plug flow in the central region of a vertical channel have been reported 
by several authors (Nedderman & Laohakul 1980; Savage 1979; Shigeki 1970; Takahashi 
& Yanai 1973). Not all of the experimental configurations conformed exactly to the free 
flowing two-dimensional regime treated in this paper, nor is it clear that shear rates were 
always sufficiently high to ensure the validity of the kinetic picture even in the shear zones. 
Nonetheless, the qualitative agreement between theory and experiment is interesting. In 
particular, Savage's experiments (Savage 1979) showed that while for narrowly spaced walls 
(approximately 30 grain diameters apart) the shear region filled the whole channel, for a 
wider channel central plug flow regions could exist. In the latter case the shear-flow regions 
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were restricted to boundary layers near the walls. Moreover, the width of the shear zones 
was found to be proportional to the particle diameter, as expected on the basis of the 
damping length. [18]. Experimental flow.visualization photographs showing velocity profiles 
and plug flow zones similar to those discussed here can be found in Savage (1984, p. 307). 

Figure 6 illustrates the thermal velocity V(e,, = 0.62) for a dimensionless grain diameter 
8 = 0.05 and T = 0.1. Because these grains are so large and because the thickness of the 
shear layer scales with grain diameter, energy can be conducted to the central part of the 
channel, unlike in the case of the smaller grains (figure 2). Figure 6 also shows the flow 
velocity as a function of position. The profile is generally rounded to somewhat blunt. Of 
course if the channel were made considerably wider, keeping the grain size the same, then 
again a region of plug-flow would occur in the central part of the channel. 
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The narrowness of the flow channel in some of these experiments (Savage 1979) and 
the narrowness of the shear zones derived in some cases from the theoretical model raise 
concern about the validity of the continuum hypothesis, on which the kinetic picture is 
based. A continuum description of a granular system can certainly never be as good as a 
continuum description of a molecular system. The differential equations used to describe 
grain flow here are dimensionally correct, however, and therefore in essence describe granular 
systems at the dimensional analysis level even for systems containing only several grains. 
The equations of course are not especially accurate at this level. A continuum picture will 
usually be useful if the dependent variables of the theory do not change radically over 
distances less than the diameter of a single particle. 

SUMMARY 

Within the kinetic model a simple and definite picture of vertical channel flow emerges. 
The shape of the thermal and flow velocity profiles is influenced profoundly by the degree 
of grain-grain inelasticity, and no treatment which neglects the effects of this energy loss 
process can hope to give an adequate description of the flow. The appropriate boundary 
values on both the thermal and flow velocities can be formulated succinctly in terms of 
collision rates and the nature of the grain-wall interaction. The overall character of the 
flow pattern, however, is not strongly dependent upon the inelasticity of the grain-wall 
collision. 

Perhaps the most characteristic feature of the flows studied here is the restriction of 
the principal region of shearing to two relatively narrow bands near the sides of the channel. 
For all except the most elastic grains (or narrow channels), the central region of flow travels 
as an essentially undeforming plug. The fact that the kinetic model is invalid within the 
plug region does not alter the validity of the solutions within the shear zones. 
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